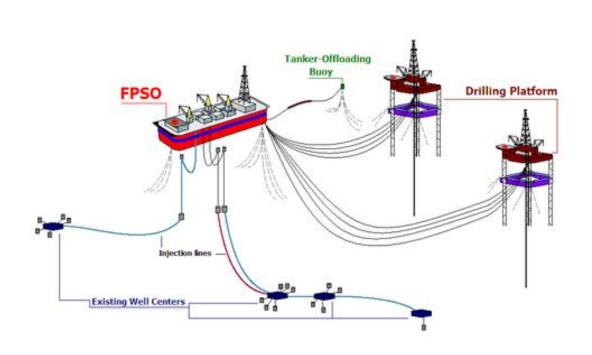


Проект SHT 80-10

Оценка FPSO



Offshore Rig Fleet by Rig Type

Rig Type	Rigs Contracted	Rig Fleet	% Utilization
Drill Barge	25 rigs	48 rigs	52.1%
<u>Drillship</u>	94 rigs	174 rigs	54.0%
Inland Barge	16 rigs	70 rigs	22.9%
Jackup	407 rigs	656 rigs	62.0%
Platform Rig	134 rigs	250 rigs	53.6%
Semisub	167 rigs	248 rigs	67.3%
Submersible	0 rigs	2 rigs	0.0%
<u>Tender</u>	23 rigs	48 rigs	47.9%

FPSO

Конструкции бывают разные

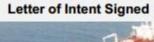
Visible Growth Opportunities for Teekay Offshore

NEAR-TERM

MEDIUM-TERM

LONGER-TERM

Acquisition Pending



Voyageur Spirit (E.ON)

Acquisition Pending

HiLoad DP Unit (Petrobras)

FSO (Salamander Energy)

Petrojarl Banff (CNR)

Directly Ordered by TOO

4 NB Shuttle Tankers (BG)

Knarr FPSO (BG)

Petrojarl Foinaven (BP)

(Statoil)

Engaged on 5 **FEED studies** for FPSOs (ship-shape and cylindrical) and FSOs valued at +\$3bn with units delivering in 2016 and 2017

Cidade de Itajai (50%) (Petrobras)

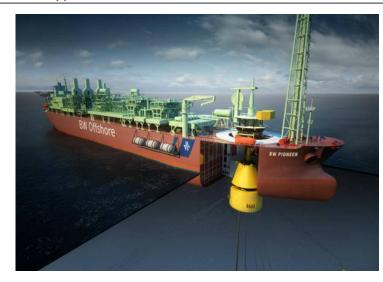
Hummingbird (Centrica/Antrim)

Omnibus Agreements with Sevan and Remora AS expected to provide additional growth opportunities

9

Новострой 2010-2011

MANAGER	CATEGORY	FABRICATION / DOCKING YARD	YARD COUNTRY	HULL	TOPSIDE EQUIPMENT	BALLAST TANKS	COMPLETED
Groupo R	Newbuilding	JSPL, Singapore	Singapore	x	x	x	2010
PetroRig	tig Newbuilding JSPL, Singapore Singapore		x	x	x	2010	
Vantage	Newbuilding	DSME, Korea	Korea	x	×	×	2010
TBA	Newbuilding	MIS, Dubai	UAE	x	x	x	2010
KS Energy	Newbuilding	MIS, Dubai	UAE	x	x	×	2010
TBA	Newbuilding	MIS, Dubai	UAE	x	x	x	2010
Saipem	Newbuilding	CIMC Raffles, China	China	x	x	×	2010
Stena Drilling	Repair	KeppelFels, Singapore	Singapore	x	x	x	2010
Stena Drilling	Upgrading	KeppelFels, Singapore	Singapore	x	×	×	2010
Seadrill	Newbuilding	KeppelFels, Singapore	Singapore	x	x	x	2010
Seadrill	Newbuilding	KeppelFels, Singapore	Singapore	×	x	×	2010
Seadrill	Newbuilding	PPL, Singapore	Singapore	x	x	x	2010
QGOG	Newbuilding	KeppelFels, Singapore	Singapore	x	×	×	2011
Saudi Aramco	Newbuilding	JSPL, Singapore	Singapore	x	x	x	2011
Asia Hercules	Repair	KeppelFels, Singapore	Singapore	x	×	x	2011
Schahin	Newbuilding	SHI, Korea	Korea	x	x	x	2011
COSL	Newbuilding	CIMC Raffles, China	China	x	×	×	2011
COSL	Newbuilding	CIMC Raffles, China	China	x	x	x	2011
Odfjell Drilling	Newbuilding	HHI, Korea	Korea	x	x	×	2011
Odfjell Drilling	Newbuilding	HHI, Korea	Korea	x	x	x	2011
COSL	Newbuilding	COOEC, China	China	×	×	×	2011
COSL	Newbuilding	COOEC, China	China	×	×	×	2011
Transocean	Repair	KeppelFels, Singapore	Singapore	x	x	×	2011
Noble	Newbuilding	STX, China	China	x	x	x	2011
Noble	Upgrading	KeppelFels, Singapore	Singapore	x	x	×	2011
Atwood Oceanics	Newbuilding	JSPL, Singapore	Singapore	x	x	x	2011
Petrobras	Newbuilding	KeppelFels, Singapore	Singapore	x	×	×	2011
PetroRig	Newbuilding	JSPL, Singapore	Singapore	x	x	x	2011
Noble	Newbuilding	MIS, Dubai	UAE	x	×	×	2011
Noble	Newbuilding	MIS, Dubai	UAE	x	x	x	2011
Vantage	Newbuilding	JSPL, Singapore	Singapore	x	x	×	2011
Work fax	Repair	KeppelFels, Singapore	Singapore	x	x	x	2011
Sevan Drilling	Newbuilding	COSCO S/Y	China	×	×	×	2011
SinoTharwa	Newbuilding	DSOC, China	China	x	x	x	2011
Vantage	Newbuilding	DSME, Korea	Korea	x	×	×	2011
Transocean	Newbuilding	PPL. Singapore	Singapore	x	×	x	2011



Ship Name	Ship Tyrç	Deadweight (DWT)	Bu ^{il+}	Flag		
Osx 1	FPS0	148 192	_	Liberia	Details »	184
Skarv Fpso	FPS0	129 193	2010	Norway	Details »	185
Pazflor	FPS0	331 000	2010	Unknown	Details »	186
Usan Fpso	FPS0	353 200	2011	Panama	Details »	187
Samsung 1767	FPS0	148 200	2012	Norway	Details »	188
STX Dalian F1003	FPS0	335 000	2012	Unknown	Details »	189
Hyundai Ulsan 2548	FPS0	81 600	2013	Norwegian International Register	Details »	190
FPSO Clov	FPS0	350 000	2013	Unknown	Details »	191
Samsung 1951	FPS0	135 000	2013	Bahamas	Details »	192
Samsung 2031	FPS0	85 200	2013	Bermuda	Details »	193
Samsung	FPS0	85 200	2013	Unknown	Details »	194
Samsung 1761	FPS0	85 200	2014	Isle of Man	Details »	195
Hyundai Ulsan Q204	FPS0	165 000	2014	Bermuda	Details »	196
Hyundai Ulsan 2549	FPS0	81 600	2014	Norwegian International Register	Details »	197
Daewoo	FPS0	85 000	2014	Belgium	Details »	198
Samsung (1762)	FPS0	86 000	2015	United Kingdom	Details »	199
Samsung (1839)	FPS0	85 200	2015	Isle of Man	Details »	200
Samsung (1850)	FPS0	85 200	2016	Isle of Man	<u>Details</u> »	201

FPSO np. SHT 80-10

Морская ледостойкая технологическая платформа судового типа (FPSO) предназначена для выполнения круглосуточно и круглогодично[1] следующих основных функций:

- прием и учет газа и газоконденсата, поступающего от ПДК;
- подготовка природного газа к транспортировке;
- компримирование газа и его подача в ММТ для транспортировки к береговым сооружениям портового транспортно-технологического комплекса (ПТТК);
- стабилизация, хранение и отгрузка газового конденсата;
- подготовка пластовой воды и ее закачка в нагнетательные скважины.

KM Arc5 AUT1-ICS DYNPOS-2 POSIMOOR EPP ANTI-ICE IGS-IG HELIDECK-H WINTERIZATION(-40) FPSO, gas production/treatment (RS) *Al Floating Production, Storage and Offloading System (Ship-Type) (Disconnectable), *AMS, HL(50), *DPS-2, HELIDK (SRF), CCO (TDST, -40°), Ice Class PC5,

Данные	судна	
	50,00	(())
	320,00	
	299,00	
	60,50	
	27,50	
	19,00	
	259 011,00	ГОРОДСКОЙ
	148 322,00	центр оценки
1	148 322,00	
	86 946,00	
	40 976,00	
	7 400 00	

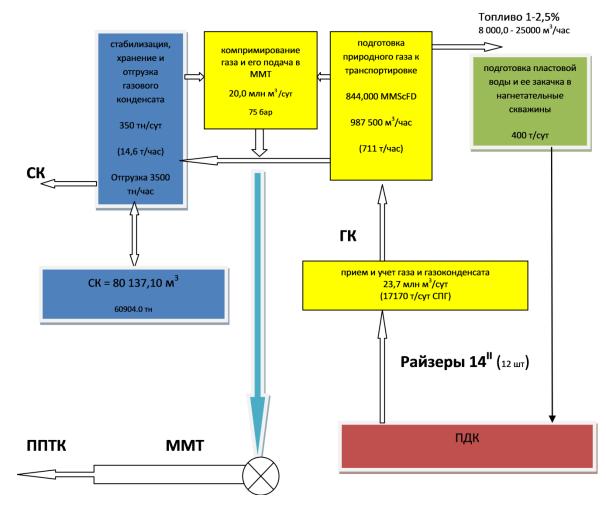
13 000,00 148 322,00

Расположение				
Имя поля	Штокман			
Блоки	13/28a, 13/28c, 13/29a, 13/24			
Глубина воды	310-350 м.			
Состояние моря (высота волны)	14,0 м значительный			
Ветра	44,0 м / с			
Текущий	0.79 м / с (1,5 узла)			

Площадь палубы Площадь модулей

Расход (макс.

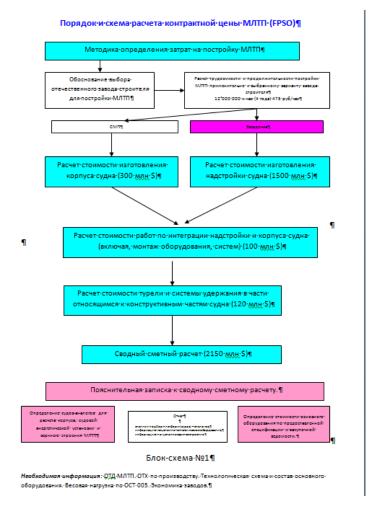
Данных о производительности						
Емкости	грузовые					
ортные конденсат	80 137,1 м 3					


Перерабатывающие мощности					
Жидкость мощность	140 000 баррелей в сутки				
Сырой	100 000 баррелей нефти в день				
Пластовой воды (макс.)	400 т воды в сутки				
Содержание масла воды сбрасываются	<30 частей на миллион				
Газ (макс.)	58 MMSCFD B 2500 PSIA				
Выгрузки (макс.)	33 000 баррелей / час				

Выгрузки (макс.)	33 000 баррелей / час		
Стабилизиро	ванный сырой		
RVP	10.10.1		
	10-12 фунта на квадратный дюйм		
H2S <u>0 промилле</u>			
BS & W	<1,0%		
Zavavi	а воды		
Jakadi	а воды		
Производительность (Макс.)	400 куб м/сут при T<30		
Расчетное давление	241		
Газ	пифт		
Расчетное давление	200		
Рабочая температура	45 ° C		
Расход	58 MMSCFD		
	0)/		
C	ЭУ		
Главные генераторы	3 x ГТГ, 6 x ВДГ		
Мощность	3 x 10 MBt + 6x9,2 MBt		
Аварийный генератор	1 x 2500 квт дизель +1*80 квт		
· · · · · · · · · · · · · · · · · · ·			
Разг	рузка		
Размер участка	500 000 баррелей		

40 MMSCED





Блок-схема ГЭУ МЛТП

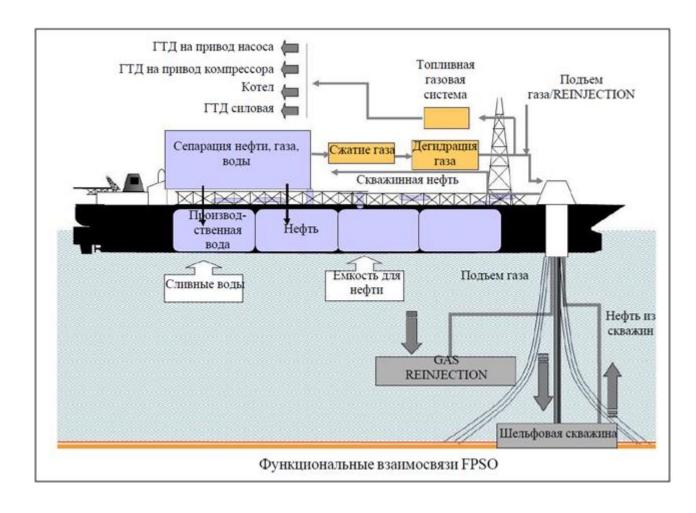
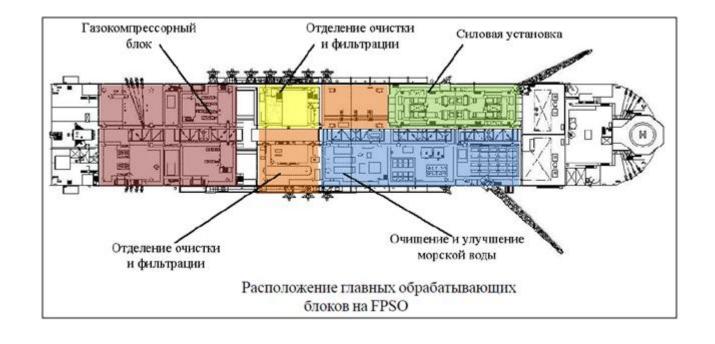
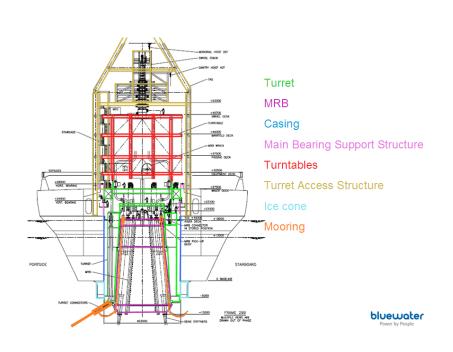
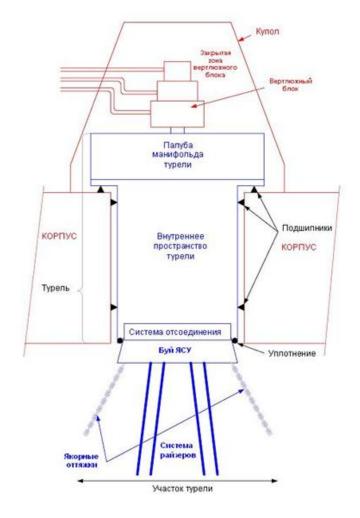


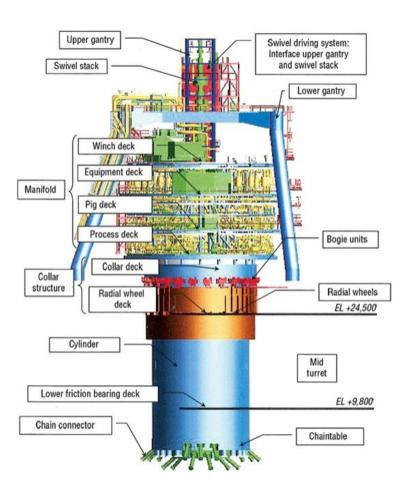
Схема расчета контрактной цены

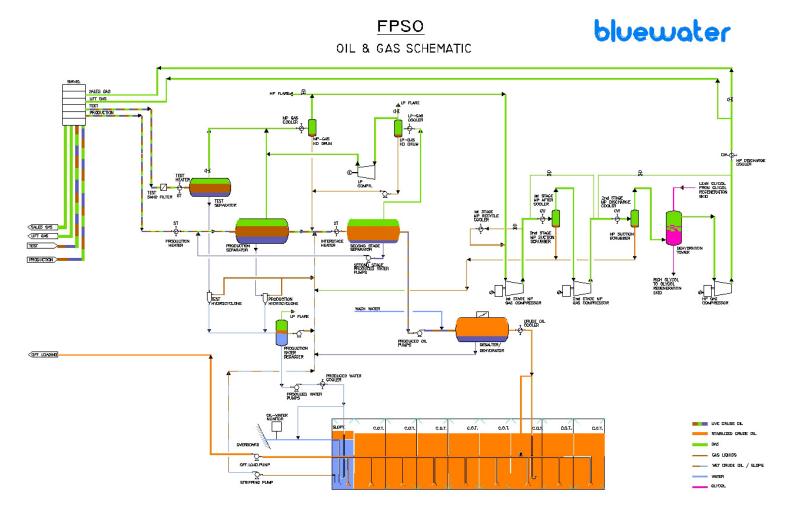


Функциональные связи FPSO



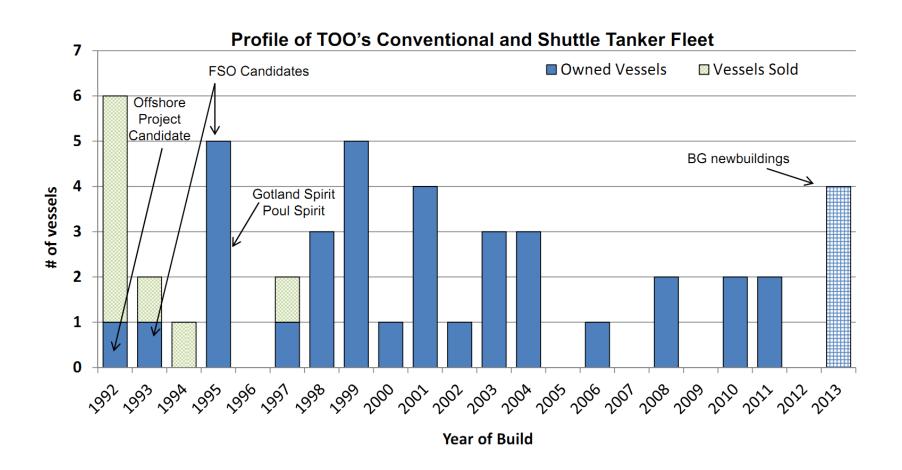

Верхнее строение


Якорная система с турелью


Технологические модули верхнего строения

Модуль	L	В	Н	V	S	Bec
М01 - Блок компримирования товарного газа	30	23,5	25	17 625,00	705	2 672,00
М02 - Блок компримирования товарного газа	30	23,5	25	17 625,00	705	2 678,00
М03 - Входной сепаратор / газосепаратор и концевой охладитель товарного газа	19,3	23,5	36	16 285,50	452,38	2 983,00
М04 - Входной сепаратор / газосепаратор и концевой охладитель товарного газа	19,3	23,5	36	16 285,50	452,38	2 687,00
М05 - Установка подготовки газа	28	23,5	36	23 688,00	658	4 148,00
М06 - Блок компримирования товарного газа	28	23,5	36	23 688,00	658	3 323,00
М07 - Установка обессоливания и предварительной подготовки МЭГ	23	23,5	34	18 106,75	540,5	2 508,00
М08 - Установка подготовки конденсата	23	23,5	31	16 755,50	540,5	2 085,00
М09 - Установка подготовки пластовой воды и система топливного газа	18,5	23,5	26	11 303,50	434,75	1 736,00
М10 - Нагреватели теплоносителя вторичного контура			41	17 824,75	434,75	2 712,00
М11 - Газосепараторы факельных установок вд/нд и блок ввода химреагентов	28,6	10,8	31	9 574,78	308,86	1 196,00
М12 - Модуль факельной системы	40	11	25	11 000,00	440	1 703,79
М13 - Электроэнергетический блок	30,5	23,5	25	17 918,75	716,75	3 018,00
М14 - Электроэнергетический блок	30,5	23,5	25	17 918,75	716,75	2 470,00
Вертолетная площадка						1 100,00
Факел						482
Трубная эскакада						5 178,00
Турель						7 400,00
				235 599,78	7 763,61	50 079,79
						35 919,79

Варианты создания FPSO

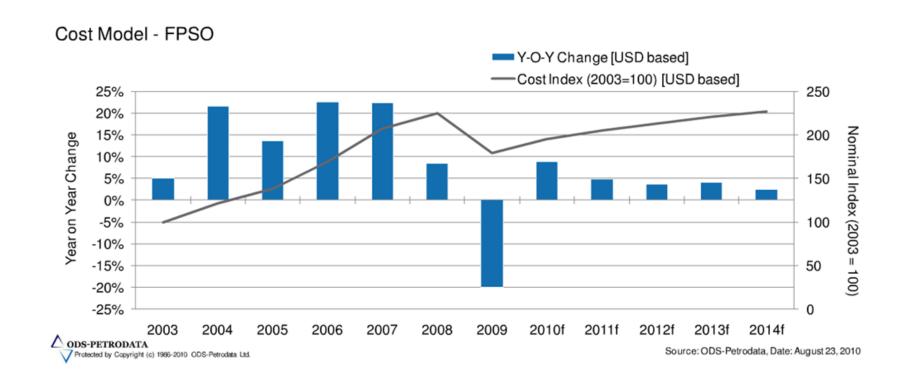

Новое строительство: срок строительства 3-4 года; примерные капитальные затраты 0,8-2 млрд. долларов США, обычно в собственность.

Конверсия: срок конверсии 2-3 года; примерные капитальные затраты 250-800 млн. долларов США, обычно лизинг / аренда.

Переоборудование (модернизация): срок 1-12 месяцев на улучшения; примерные капитальные от 50 млн. долларов США, обычно лизинг / аренда.

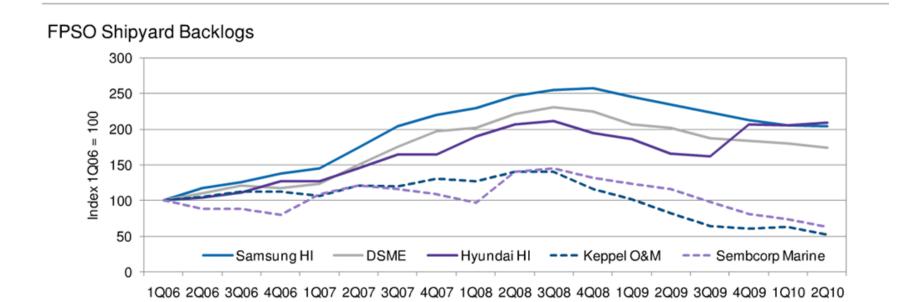
Танкер – FSO - переоборудование




Dropdown of Assets Deleveraging Teekay Parent

Teekay Parent Net Debt

Тенденция индекса FPSO



2010-2014 cost inflation to stay low compared to 2003-2009.

#	Ship name	Ship type	DWT	Built	Flag
1	Daewoo	FPS0	85 000	2014	Belgium
2	FPSO Clov	FPS0	350 000	2013	Unknown
3	Hyundai Ulsan 2548	FPS0	81 600	2013	International Registe
4	Hyundai Ulsan 2549	FPS0	81 600	2014	International Registe
5	Hyundai Ulsan Q204	FPS0	165 000	2014	Bermuda
6	Samsung	FPS0	85 200	2013	Unknown
7	Samsung (1762)	FPS0	86 000	2015	United Kingdom
8	Samsung (1839)	FPS0	85 200	2015	Isle of Man
9	Samsung (1850)	FPS0	85 200	2016	Isle of Man
10	Samsung 1761	FPS0	85 200	2014	Isle of Man
11	Samsung 1767	FPS0	148 200	2012	Norway
12	Samsung 1951	FPS0	135 000	2013	Bahamas
13	Samsung 2031	FPS0	85 200	2013	Bermuda
14	STX Dalian F1003	FPS0	335 000	2012	Unknown
0600	строй 2007-2012 гг.				
#	Ship name	Ship type	DWT	Built	Flag
1	Agbami Fpso	FPS0	337 859	2007	Nigeria
2	ECO III	FPS0	8 825	2008	Mexico
3	Fpu Alima	FPS0		2007	Unknown
4	115	FPS0	120 000	2007	Unknown
5	116	FPS0	120 000	2007	China
6	117	FPS0	286 480	2007	China
7	Maersk Peregrino	FPS0	307 284	2008	Singapore
8	Osx 1	FPS0	148 192	2010	Liberia
9	Pazflor	FPS0	331 000	2010	Unknown
10	Pyrenees Venture	FPS0	143 690	2007	Australia
11	Sevan Hummingbird	FPS0	40 000	2007	Bahamas
	Sevan Piranema	FPS0	45 145	2007	Bahamas
12		FPS0	45 145	2008	Bahamas
	Sevan Voyageur	FFSU			
12 13 14	Sevan Voyageur Skarv Fpso	FPS0	129 193	2010	Norway
13	, 0			2010 2007	Norway Panama

Параметры	Аналог 1	Аналог 2	Аналог 3	Аналог 4
Тип	FPSO, cylindrical floating	FPSO FPSO		FLNG
Наименование	Goliat	Q204	CLOV FPSO	
Фото		нет		Shell's Floating Liquefied Natural Gas (FLNG) Project Helicopter Control nom and crew quarters FLNG holly Straige turks sistent moving system Child
Заказчик / оператор	ENI Norge AS	BP	TOTAL	Shell
Судостроитель	ННІ, Ю. Корея	ННІ, Ю. Корея	DSME, Ю. Корея	
Дата заказа	фев.10	фев.11	авг.10	2012
Срок поставки / год постройки	W///	май.16	май.13	2017
Цена контракта	1,1 млрд. долл. США	1,2 млрд. долл. США	1,81 млрд. долл. США	оценка 8-15 млрд. \$ США
Детали контракта	5/	construction of FPSO (ETC)	Корпус и верхнее строение	-
Производительность		0,32 mln bpd	6,5 mln of natural gas and 160,000 barrels of crude oil every day	3,6 млн. т LNG в год
Хранение	29	0,8 mln bbls	180,000 barrels of crude oil	(2)
LOA, M	2 21	270	305	488
В, м	•	52	61	75
Н, м	-	14-20	-	105
Do, т	2	0	110	22
Экипаж, чел	. = = = = = = = = = = = = = = = = = = =	125-168	>100	110-120
Dwt	9 -	-	350 000	600 000
IMO	-	-	9630951	-
Район эксплуатации	Goliat field	UK – Aberdeen	Ангола	Shell's Prelude field, СЗ. Австралия
WD, M	52	400 м	1365	250
201 1111	www.hhiir.com	www.hhiir.com	http://subseaiq.com/data/Project.aspx?proj ect_id=324	http://www.bbc.co.uk/news/science- environment-13709293
Источники	http://www.offshore- technology.com/projects/goliat/	http://www.bp.com/liveassets/bp_internet/gl obalbp/STAGING/global_assets/downloads/ S/scotland_aad_environmental_statement_ Quad204.pdf	p ·	01

Выделяются основные критерии ценообразования:

- 1. Основные размерения, весовые характеристики, срок службы, состав экипажа, класс, система удержания.
- 2. Местоположение. Месторождение, глубина моря, метеоусловия.
- 3. Объемы емкостей хранения (газа, экспортного конденсата, топлива, отстойных материалов).
- 4. Перерабатывающие мощности (по добыче газа, по очистке газа и передаче в ММТ, по подготовке пластовой воды, по выгрузке конденсата).
- 5. Параметры стабилизации конденсата. Параметры закачки пластовой воды. Параметры передачи газа в ММТ. Параметры выгрузки конденсата.
- 6. Мощность СЭУ.
- 7. Экономические характеристики на режимах работы (переход, постановка на точку, на постоянные швартовы, основной режим работы, выгрузка конденсата, аварийный при снятии с точки) и суточное содержание при стоянке без работы технологического оборудования.

ЦОФ по зарубежным источникам

По данным статьи «Creating Better Cost Estimates for Floating Offshore Structures by Assessing Cost Correlation and Understanding Risk», Erebi O. Cocodia.

WBS Component (Y)	Cost Driver (X)
Hull vessel and deck weight (вес корпуса, палубы)	Storage requirement (требуемый объем хранилища)
Production deck weight (вес производственного комплекса / палубы)	Topsides weight (вес верхнего строения (надстройки))
No. of beds (количество коек)	Topsides throughput (Производительность верхнего строения)
Accommodation weight (вес помещений по размещению)	Persons on Board (Экипаж)
Turret weight (вес турели)	No. of Risers (количество райзеров)

03.10.2014 ГОРОДСКОЙ ЦЕНТР ОЦЕНКИ

27

Для всего судна:

- основные размерения, весовые характеристики (Do, Dwt), срок службы, состав экипажа;
- производительность верхнего строения, состав оборудования (объем добычи и обработки газа, нефти, транспортировки / перекачки). Параметры стабилизации конденсата, параметры закачки пластовой воды. Параметры передачи газа в ММТ. Параметры выгрузки конденсата.
- объем емкостей хранения (газа, экспортного конденсата, топлива, отстойных материалов, нефти);
- суммарная мощность энергетической установки;
- верфь судостроитель (в юго-восточной Азии до 20-40% дешевле, чем в России и Европе);
- класс, ледовое усиление (влияет на район работ);
- экономические характеристики переход, постановка на точку, на постоянные швартовы, основной режим работы, выгрузка конденсата, аварийный при снятии с точки) и суточное содержание при стоянке без работы технологического оборудования.

Для турели:

- максимальная глубина моря, на которой способно работать FPSO (WD, water depth);
- система позиционирования;
- тип турели (внутренняя, внешняя).

Показатель	Южнокорейская вервь	Российская верфь	Причина высокого уровня затрат на российских верфях
Продолжительность постройки, мес.	12	18	Отсталые технологии строительства судов и организации производства
Структура затрат на строительство судна			
Материалы, комплектующие изделия и оборудование	50%	62%	Отсутствие скидок от поставщиков оборудования и материалов вследствие малых объемов закупок и неэффективной процедуры закупок
3/п с отчислениями ОПР	17%	28%	Низкий (примерно в 10 раз) уровень производительности труда и несоответствующий ему уровень зарплаты
Накладные расходы	15%	42%	Высокие эксплуатационные затраты верфи вследствие низкого уровня технологии и организации производства и длительной продолжительности постройки
Прочие прямые расходы	4%	8%	Низкий уровень технологии и организации производства, длительная продолжительность постройки
Себестоимость постройки	86%	140%	Отсталые технологии строительства судов и организации производства
Рыночная цена судна	100%	100%	

Спрос и предложение буровых судов. Тенденции судостроения

- Всего в мире насчитывается 201 судно FPSO. Средний возраст флота FPSO 23,5 года, максимальный 55 лет, мода 36 лет, медиана 24 года. Средний дедвейт FPSO 165 126 т, максимальный 400 000 т, мода 120 000 т, медиана 140 362 т.
- На FSPO, как правило, работает от 40 до 70 человек, в зависимости от занимаемой должности период нахождения на судне составляет от 28 до 90 дней. На очень крупных FPSO экипаж достигает 100-140 человек (Maersk Peregrine – 100 чел., USAN – 140 человек, Skarv FPSO – 100 человек).
- FPSO оперируют на различных глубинах вод от 20 до 2000 м. Стоимость швартовки FPSO в глубоководном бассейне меньше, чем та, которая нужна для закрепления платформы. Большинство FPSO работают на глубинах 50-250 м. наметилась тенденция на увеличение глубины моря, на которой способны работать суда.
- Современное FPSO, например проект Q204, рассчитано на производительность обработки 320 000 баррелей в сутки (0,32 mln bpd). Существующие крупные FPSO способны обрабатывать 120 000 200 000 bpd (например, Maersk Peregrino обрабатывает в сутки 100 000 нефти / 350 000 баррелей жидкой фракции). Есть и суда с меньшей производительностью, например, OSX-1 2010 г.п. добывает и обрабатывает 60 000 boe.
- Удельная стоимость строительства турели с системой швартовки достигает 71 428.57 \$/тонна.
- Удельная стоимость двигателя серии 50DF морского исполнения 600 €/кВт (около 800 \$/кВт), 52 083 €/т. Удельная стоимость двигателя серии 18V50DF не морского исполнения 620 \$/кВт. Удельная стоимость двигателя серии RB211 морского исполнения составляет 937,5 \$/кВт (коэффициент 1,3-1,5).
- Стоимостные показатели турбодетандера как объектового, а не серийного агрегата, можно оценить в \$ 500-700 (2006 г.) на один кВт установленной мощности, согласно исследованиям Центрального института авиационного моторостроения (ЦИАМ). По состоянию на 2012 год, диапазон стоимости турбодетандеров 750 1 225 \$/кВт.
- 11.01.2011 компания заключила контракт с Brazilian shipyard Engevix Construções Oceânicas S.A. на поставку насосных систем для восьми судов FPSO. Контракт общей суммой USD 46.7 million. Поставка оборудования запланирована между 2012 и 2014 гг. (Таким образом,
- 1 комплект стоит USD 5,837 mln).
- Стоимость одного утилизационного котла для современного судна FPSO составляет USD \$1-2 mln.

- В 2012 году вероятная стоимость постройки FPSO может находиться в диапазоне
- 1.2-2.5 млн. долл. и выше.
- Большинство судов FPSO переоборудуются из старых танкеров, балкеров, что экономически обосновано. По статистическим данным на начало июня 2010 года, лишь 36% из существующих конструкций были построены, а не переоборудованы путем конверсии.
- Удельная стоимость строительства судов FPSO находится в диапазоне 2 348 11 611 \$/Dwt, 9 877 19 167 \$/Do.
- Стоимость строительства верхний строений FPSO
- Girassol FPSO только верхнее строение. Angola by MPG venture, вес 25,000 тонн,

\$520 млн., заказ 1998/ сдача 2001, цена за тонну = \$20,800/ тонна, в ценах 2011 цена за тонну = \$30,000/ тонна. Dalia FPSO – только верхнее строение. Angola by Technip, вес

22,000 тонн, \$640 million, заказ 2003, цена за тонну = \$29,091/ тонна, в ценах 2011 цена за тонну = \$39,000/ тонна.

- Стоимость корпуса FPSO (Hull), верхнего строения и необходимых приспособлений (Appurtenances)
- Plutonio FPSO, Angola by HHI, вес 80,000 tonnes, \$350 million, заказ 2004, цена за тонну = \$4,375/ tonne, в ценах 2011 цена за тонну = \$6,000/ тонна. Akpo FPSO, Angola by Daewoo, вес 90,718 тонн, \$1,08 billion, заказ 2005, цена за тонну = \$11,905/ тонна, в ценах 2011 цена за тонну = \$15,000/ тонна. Pazflor FPSO, Angola by Daewoo, вес 120,000 тонн, \$2.32 billion, заказ 2007, цена за тонну = \$19,333/ тонна, в ценах 2011 цена за тонну = \$22,000/ тонна. USAN FPSO, Nigeria by HHI, вес 116,000 tonnes, \$1.6 billion, заказ 2008, цена за тонну = \$13,793/ тонна, в ценах 2011 цена за тонну = \$15,000/ тонна. Goliat FPSO, Norway by HHI, вес 52,000 тонн, \$1.1 billion, заказ 2010, цена за тонну = \$21,154/ тонна, в ценах 2011 цена за тонну = \$22,000/ тонна. Стоимостная пропорция «корпус / верхнее строение» составляет 1:3,5 – 1:5.
- Удельная стоимость конверсии Maersk Peregrino составила 5 406 \$/Dwt.
- Новое строительство: срок строительства 3-4 года; примерные капитальные затраты 0,8-2 млрд. долларов США, обычно в собственность.
- Конверсия: срок конверсии 2-3 года; примерные капитальные затраты 250-800 млн. допларов США, обычно лизинг аренда.
- Переоборудование (модернизация): срок 1-12 месяцев на улучшения; примерные капитальные от 50 млн. долларов США, обычно лизинг / аренда.
- Цены на сталь основной индикатор, влияющий на стоимость строительства (конверсии, переоборудования) FPSO. 20% инфляция стали (в 2010 г.) привело к 4% инфляции FPSO.

- Строить у нас дороже и дольше (примеров много: ПАЭС, Ледоколы, ПД15500 и т.д.)
- Оборудование санкции!
 - **3,62 млрд**.\$ около 5 лет
- В Корее 2,5 млрд. \$ и сроки 2-2,5 года

Спасибо за внимание

Локтионов Александр Никитович тел +79119402423

